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SUNMARY

i.~et X1,...,X~ be i.i.d. random variables with probability 
distribution

F9 
indexed by two real parameters. Let p = ;(X 11...,X ) be an estimate

11

of p other than the maximum likelihood estimate1 and let 9 be the

solution of the likelihood equation a/ae Lu L(x,9,p) = 0 which maximizes

the likelihood. We call 9 a pseudo maximum likelihood estimate of 9,

and give conditions under which is consistent and asymptotically normal.

Pseudo maximum likelihood estimation easily extends to k parameter models,

and is of interest in problems in which the likelihood surface is ill-behaved

in higher dimensions but well-behaved in lower dimensions • We examine several

signal plus noise or convolution models which exhibit such behavior and

satisfy the regularity conditions of the asymptotic theory. For specific

models, a numerical comparison of asymptotic variances suggests that a

pseudo maximum likelihood estimate of the signal parameter is uniformly more

efficient than estimators that have been advanced by previous authors. A

number of other potential applications are noted.

I. INTRODUCTION

Probability models abound for which the analytical derivation of the

maximum likelihood estimate of model parameters is virtually impossible.

For many such models, one among the wide variety of numerical algorithms

available for approximating the NLE will prove satisfactory. For other

models , numerical methods are unreliable or converge too slowly to be of

use. The recent paper by Dempater, Laird and Rubin (1977) , and the

associated discussion, are indicative of the fact that numerical

procedures for approximating MLE’s are still being vigorously investigated.

—-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Among modela whose elusive behavior with regard to the maximum likelihood

approach has been studied extensively is the Cauchy model (see Barnett

(1960) and Ferguson (1978)). There has also been difficulty with the

likelihood approach to estimation in the presence of nuisance parameters.

Neyman and Scott (1948) constructed an example of an inconsistent MLE in

such a problem. Godambe (1977) has referred to this latter area as the major

failure of the likelihood approach, and has developed the theory of

estimating equations in part to fill this void. Godambe and Thompson

(1974) treat optimal estimating equations in the presence of nuisance

parameters. Kiefer and Wolfowitz (1956)  proved the consistency of the

maximum likelihood estimate in a particular version of the nuisance para-

meter problem, but it remains true that closed form expressions for the

MLE Lu such problems are rare, and the multiplicity of solutions to the

likelihood equations often renders numerical methods impractical.

The difficulties in obtaining the MLE in problems with nuisance

parameters has led to the investigation of alternative estimation

procedures which have the spirit of likelihood procedures, but are

compromises due to the untractability of the preferred approach.

Notable among such procedures are maximum integrated likelihood estimates,

maximum marginal likelihood estimates and maximum conditional likelihood

estimates (also called conditional MLE’s). These three techniques are

discussed in the paper by Kalbflei~ch and Sprott (1970). The first of

these has a Bayesian flavor in that one first eliminates the nuisance

parameters by integrating the likelihood function with respect to some

probabiAity distribution on the appropriate portion of the parameter
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space, and then obtains an estimate by maximizing the integrated

likelihood. The maximum marginal likelthood estimate may be defined

when the likelihood function factors into two components, one of which

depends only on the “structual parameter” and not on nuisance parameters.

When such a factorization is possible, the estimate is obtained by

maximizing this latter component of the likelihood. The maximum

conditional likelihood estimate is defined when there exists a

statistic T with the property that the conditional distribution of

the sample, given T, does not depend on the nuisance parameters. The

estimate is obtained by maximizing the likelihood conditioned on T.

These approaches have proven tractable in a number of problems which have

resisted the direct maximum likelihood approach. Moreover, optimality

results have been established for some of these procedures. For example,

Andersen (1970) has shown that maximum conditional likelihood estimators

are strongly consistent under regularity conditions, and has derived the

parameters of their asymptotic (normal) distribution. Godambe (1976)

gives conditions under which the conditional likelihood equation is the

optimal estimating equation in a fixed sample size problem.

A comprehensive review of the literature on estimation in the presence

of nuisance parameters is given in two papers by Basu ((1975) and (1977)).

To the extent that approaches to estimation in nuisance parameter problems

have focused on the elimination of nuisance parameters through conditioning

or data reduction, the approaches have limited applicability. Many problems

of practical importance do not give rise to convenient factorizations or

to the existence of useful sufficient or ancillary statistics. The

convolution models considered in the latter half of this paper are models
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in which the approaches mentioned in the preceeding paragraph fail. It

is precisely the characteristics of these models that has ted us to the

approach studied in this paper.

As a motivating example, consider a random variable X which presents

itself as the sum of independent components Y and 2, to be referred to

as signal and noise variables respect~.vely. For concreteness, suppose Y

is Poisson distributed with parameter 8 and Z is binomially distributed

with parameters (N p), with N assumed known. Signal plus noise variables

such as X will be discussed in detail in Section III of this paper, and

we postpone until then any discussion of the appropriateness of these

models in describing random phenomena or of their stochastic and statisti-

cal properties. Let us focus on the problem of estimating 8, the signal

parameter, assuming it to be the parameter of primary interest. A natural

approach to this estimation problem is to estimate the pair (9,p) and

advance the estimate of 8 so derived as appropriate. For the PoisBon-

binomial conirolution, for example, one can estimate (8,p) by the method

of moments, as in done by Sciove and Van Ryzin (1969), and thus obtain an

estimate of 8. Maximum likelihood estimation has not as yet been accom-

plished for this model, primarily due to the cumbersome nature of the

likelihood function,which consists of the product of sums of products

of component probabilities. Moreover, it is difficult to obtain the MLE

numerically for this model since the likelihood surface has several local

maxima. In the problem at hand, maximum likelihood estimation is

untractable and the method of moments is inefficient. Moreover, neither

method recognizes the special role played by the signal parameter 8, but,

instead, treats both parameters equally. We study here an alternative
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approach, that of pseudo maximum likelihood estimation, which focuses on

the “structural” parameters of the model . For the Poisson-binomial

convolution, for example, we estimate the noise parameter p by the

method of moments, and, treating this estimate as the true value of p,

estimate 9 by maximizing the likelihood. Results established in this

paper will imply that this pseudo MLE 8 is consistent and asymptotically

normal. In a numerical comparison of the asymptotic variances of 8 and

the method of moments estimator of 8, we find 9 to be uniformly

superior.

In general, pseudo maximum likelihood estimation consists of replacing

all nuisance parameters in a model by estimates and solving a reduced system

of likelihood equations. The method is a reasonable one in problems in

which lower dimensional maximum likelihood estimation is feasible while

higher dimensional maximum likelihood estimation is untractable. As we

shall see, the method is in this sense ideally suited for application to

many convolution models. In Section II, we develop the asymptotic theory

of pseudo maximum likelihood estimators, establishing under regularity

conditions consistency and asymptotic normality. In S ection III, some

known results are summarized and some new results are obtained for several

families of signal plus noise distributions. In particular, lower dimen-

sional maximum likelihood estimation is shown to be feasible for a variety

of such distributions. In Section IV, several signal plus noise distribu-

tions are shown to satisfy the regularity conditions under which the

asymptotic theory of pseudo maximum likelihood estimates is developed.

In Section V, we discuss the asymptotic relative efficiency of pseudo

maximum likelihood estimates, and make some concluding general remarks

in Section VI.
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II. ASYMPTOTICS

Let X1,...,X~ be a random sample from a member of the two parameter

family ~ = LFeU~ 
of distributions on the reel line. We will assume

throughout our development the existence, for every (9,11), of the density or

probability mass function f(xIø,rr) with respect to some sigma-finite measure

p. on R .. The method of pseudo maximum likelihood estimation may be viewed

as follows. Given a sample of size n from F911, an estimate is

developed for the paramter it by some technique or approach other than

maximum likelihood estimation. The pseudo MLE is then obtained by maxi-

mizing the log likelihood £n (9
~

1Tn)
~ 

viewed as a function of the single

parameter 9. The pseudo MLE 9~ should have good large sample properties

when does. For example, if Ti is a consistent estimate of 11 and £

is a smooth function of (9,11) near the true parameter value, then for

large n the MLE and the pseudo bILE should be close with high probability.

The consistency of the pseudo bILE is thus expected in srnooth problems, and

is established here under simple and natural regularity conditions. The

efficiency of 9n 
will of course depend on the relative efficiency of

The asymptotic distribution of 9n is derived under regularity con-

ditions for problems in which rr~ is Tn-consistent and asymptotically

normal. The asymptotic theory for pseudo MLE’s is developed here for a

two-parameter problem rather than more generally because of the resultant

ease of exposition and simplicity of notation. We trust that the validity

of the extension to k-parameter problems will be apparent to the reader.

We will make use of the Mann-Wald symbols for convergence and

boundedness in probability. Specifically, let be a sequence of
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random variables and Can) a sequence of positive constants . We write

= 0(a) (2.1)

if x I / a  -. 0 in probability. The consistency of (Xe) as estimates

of 9 may be written (Xn - 9) = O
~(l). We will write

Xn 
= %(*n) (2.2)

if Ye> 0, there exists an integer N€, and k5 E (0,~ ), such that Yn> N5,

i( .1~1 < ke)> 1 -

If Xn = C~ (a~)~ we say that IX~I/a~ is bounded in probability, and we
use the phrase “Xe is /~t-consistent for 0” to mean v

t
~
1(Xn 9) =

We will make use of the well-known result that if X = 0 (a ) andn p n
Y =~~~(b ), then X Y  = 0  (a bn p it flu p n fl

We make repeated use of a fundamental lemma which is elementary and

perhaps well known. We have not seen it in the form below and present

it with proof both for completeness and for emphasis.

Lemma 2.1. Let X1,...,X be i.i.d. random variables from a distribution

F
11 
on the real line, with irs rIc~ . Let n0Efl be the true value of the

A Prparameter, and let = rr~ (X1~...,X ) be such that it~1 —> TI0. Let
$(x ,u) be a differentiable function of it for irE B, an open neighborhood

of ir0, and for almost all x in the sample space Z, and suppose

If

I~~ $(x ,rT)~ < M(x) (2.3)
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for all riEB , where E M(X1)< ~, then

E $(x~~~~) ~~> E $(X1 r10) . (2.4)
i=l ,

Proof. Consider the Taylor series expansion

~ ~~$(X~,11) = 
~~

(2.5)

+ (~~~-11~~) ~~ 
i~l 

~~ ~
(Xia

~n
) + 0 (1)

where is between ir
~ and rr~ . By the weak law of large numbers,

E ~~X~ ,rr0) ~~> E
i=l

The second term on the right of (2.5) is O
~

(l)
~ 

which may be seen as

follows. We have - n~ = O
~
(l). Let € > 0, 6 > 0 , and define

S = ~~~ E B )
it n

n
and T = E M(X ) <EM(X )+ 6).it fl

j=1 ~ I

Since 
~~ ~~

> TT
0
€ B and 1 M(Xi) ~~> EM(X1), we may find

i=l

N5 
E(O,co) such that Vii > N~, P(S

~
) > 1 - 6/2 and P(T) > 1 - €1 2 . We

then have Tn > N5,

~~~~ —-  - ~~~~~~~~~— —-——
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E .
~~~

- $(X
~
,ff
~)f 

< EM(X1)+6)

< P(S f l T )

< 1 — c .

Thus , 
~ i=l ~~~~~~~~~~ 

= ~~ (l) and ~ ~~*(X i~~n) - E$ (~C1,r0)= 0 (l),

completing the proof.

We remark that the condition E j $ ( X 1, 1T0) I  < ~ in Lemma 2.1 may

obviously be weakened to E $(X1,rT0)
+< ~~~. We now define the notation

to be used in the sequel. Let X~,...,X be iid, each with density or

probability mass function f(.190,1r0) defined on the sample space
ZCR , where O0EA , A open with AC®CR and rr0EB , B open with

BCflCR. Let

~(xI9,1r) Lnf(xj8,n)

£~(8, it) 
E Lit 

~ 
f(x~I9,rr) = 

~~~~ 
~(x1 j9,ir)

£ (9, ri) ~ £~(9~rT).

We will occasionally suppress the subscript it in the latter

expressions. Partial derivatives are devoted with subscript notation;

for example,

~9(xI 8 ,ii) ~~ ~ (xI9 ,rr)

and 2

~9~
(xI9,Tr) ~~~~ ~(xITr ,9)
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(A4) For all (0,11)EA XB and for all xEZ,

lo 
f ( x I O ,Tt) 1 < M(x,9)g 
f(xI9

0
,11~

where EM(X1,9)< ~ Y9 EA.

(A5) The following third partial derivatives are bounded by

integrable functions:

(i) I~~99(xI9,iO I < M (x) Y(9,TT)EA XB ,VX

(ii) I~~~~(xI90,n)l< M(x) Vr EB ,Vx

(iii) I~~,.~~xI90,TT)kM(x) Y r r E B , Vx ,

where EM(X1)< ~~.

(&6) For any (e,it) ,
~ 
(eo,ll o

),

P~ j f (x1~9,rr) = f(x1~80,rr0)) < 1.0,T10 -

We first establish the consistency of the pseudo bILE.

Theorem 2.1. Let X1,...,X 
i~d F9,~~

, and let 
~n 

=

be a consistent estimate of it0. Under regularity conditions (Al), (A4)

and (A6), the equation
- 

~~ 
£ (9 , T T )  0

has a solution ê such that 8 ~~> 0n n 0
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Proof: Let 9EA be fixed, and define

*(xIlr) = ~(x(9 ,1r) —

— L f(x19,TT)
‘~

By (Al), $(xlii) is differentiable f or itEB, and by (A4) ,

I$11
(xIrT)I < M (x) V r i E B ,Yx.

Thus, by lemma 2.1,

~~~~~~~~~~~~~~~~ 
= 

~ 
E

~~ (Xi ,n )  ~~> B9 ,11 $(x 111T 0)

= E Lii f (X 1I9 ,rr0) (2.6)
90,11

° 
f(X lle Otr o)

It is easy to show that E19 11 ~4r(Xi
ITro)

+ < ~ in general , and we thus
‘ 0’ 0’ -

claim that ~~~(9,1T~) - £ (eo,T1) converges to a negative number

(possibly - •) if 9EA - 
~~O

1• This claim follows from Jensen’s

inequality and condition (A6) since

E i 
f(X119,r10) < In E f (X 119, 1r0) 

= 0.80,1~
10 

ii f (X 1j 9 0, rT0) Oohro f(x1 Ieo,ll o)

Because of the convergence demonstrated above, we may find, for any

c ,6 > 0 for which - 

~~~ 
+ e) c A, an integer N66 such that

ii> N 6 6  implies that
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K~n~~ø 
e~ rc~) <C~(00,ir~))> 1 -

1(Z
~
(eo+ e.rr~) <

1
(e0.iT~))> 1 -

and P(rr~~E B ) > l - ~~~~.

Thus , for ii >

(£(9,1T ) has a local maximum 9~ E(90 
- 6,00+ e))

> 1 - 6.

By (Al), ~~ is a solution of the equation

~~ £~(e,ir~)= 0.

This completes the proof.

The usual remark about consistency applies here, that is, the above

result does not imply that the pseudo bILE is consistent, but only that

the pseudo maximum likelihood equation has a consistent root. In all

applications considered in this paper, however, we are able to show

that the pseudo maximum likelihood equation has a unique solution, so

that in the models we consider, the pseudo MLE is indeed consistent.

We turn to the asymptotic distribution of the pseudo bILE. 
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Theorem 2.2. i..et x1,...,x i~d F9 1 1 , and let ii ii (X11...x ) be

such that (ii~ - 11~) = O (l//n), and suppose

~~~~~ 

[~
e(eo’mno

)] ~> ~~~~~ ~~1l ~l21’,
L11

~~
to L ~22J

Then, under regularity conditions (Al)-(A6), the pseudo MLE e~ is
asymptotically normal, that is

fn(e -0 0) ~>~~(~~~2) (2.8)

.9
where ~2 = 

1 
+ (E~~ ~l2 - 2~l,) (2.9)

11 .911

Proof. By condition (Al) and the consistency of and Tr~, we may expand

about 9o as follows:

0 = ~“i~ ~~~~~~~~~ 
V’fl

+/E(e - 90) ~~~(90,r r )

+ 
~~

Tn(9 
~o~

2 
~~~~~~~~~~ + 0 (1),

where 0
n lies between 9o and O~. Then
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- (~ £9
(s0,TT~~) ~

‘
~~~ n -

+ ~~~~~~~~~~~~ (~~~iT~)j + O~(l).

which we rewrite as

-/n~ (9~ ,ir ) + 0 (1)
fn(9 -e 0) = 

— A 1 A (2.10)ii 
£
~~
(e
o
,TI ) + 

~ ~~~~~~~~~~~~~~~

We examine the numerator and denominator of the right hand side of

(2.10) separately; using conditions (Al), (A2), (A3) and (A5 ) and the

consistency of 8~• and ii , we establish the following three identities:

(a) /n~9(901ri~)=/n~9(90,it0) 
- /n(ii~ -ir0)c912+ O

~
(l). To see this,

we expand £
9
(90,rr ) about ¶T~, yielding

/n19(e0,
Tr~) = /nZ

9(90,rr0) + /n(, - ITo) £911(00, Tt0)

+ /n(~~ 
- 11
0
)2 £ (e0~

rr~) + 0 (1),

where ~ is between ii and ii .n 0 ii

Since

~~~~~ ~~~~~~ 
= 

~ ~
E
1
4OiITT (Xi,9o,~~ ),

we can argue as in the proof of Lemma 2.1 that ~~~ ~~~~~~ 
is bounded

in probability. Since /n(Tr~ - lTo) 2 
~~> 0, we have that

= O
~
(l). We also have

- ~
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+ 
~l2~ 

= O
~

(l)

sunce/n(~~ -ir0) is bounded in probability and

= 
~~

converges in probability to E9 ,11~~~~
(X1,O0,ir0) = 

~l2 Thus , (a) is

established.

(b) e(eo,TT) ~~> ~~~~ Define ~~x,ir) = ~~9(xf 90,ir). $(x,.) is

defined and differentiable for irEB , and by (A2),

4r11(x,Tr)I <M(x)

where E M(X1)<~~ and

E $(X1,1T0) ö11.

Thus, (b) follows by Lemma 2.1.

A1 A  — p
(c) 

~ 
(9n

_ 6
~ eee~~n~V_> 0. To see this , it suffices to show

that ~~~~~~~~~~~ is bounded in probability. For e, 6 > 0 , define

A A

s~ = f(O~,11) E A x B )

and

= E M(X~) <EM(X1)+ 8)i=1.

where N is the donimating function in condition (A5), (i).
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Since °~ 
> 0O’~n ~~

> Ti
0 

and 
~ ~~

M(Xi) ~~> E M(X1) ,we can find

N E (O,~) such that n > N
5 
implies both P(s~) > 1 - €12 and

P(T~) > 1 - €12. Thus, for it > N5,

pCI~~E 99~(~~,ii )l < E N ( X 1)4- ô )

� P(S~ f l T~) > 1 -

that is, £999(øn,
r r )  = 0 (1), establishing (c).

We thus may write

A - /n £ (9~,11 
)  + 0 (1)

/n~9 -9~) =  
— A 

O n  
_

~~~
- A

- 
n £~

(eo,11 ) + 0n 9O~~ø~ø
(9n~

in)

- 
1n~~(90, rr0 ) -/n(ii -u 0

)J
12+ 0 (l)

— 
+ o~

(l)

which converges in distribution to ?t(0,a
2), where a2, given in (2.9),

may be obtained by noting that E11 =~~1l~

We close this section with several remarks. First, we remark that

the regularity cordunations under which the results of this section are

proven can undoubtedly be weakened. We have made no effort to do this,

but are satisfied with conditions that are fairly standard and are

reasonably easy to check. Moreover, the applications of interest to

us satisfy the stated conditions. We note that if .9 E (.
2
)22 TI

_ _ _ _  _ _ _  
________________
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exists and is positive, and if is asymptotically equivalent to the

!ILE of r1~, then the asymptotic variance of 9 given in (2.9) reduces

to

2 ~22a — 2 ’
11 22 12

That is, 0~ is asymptotically efficient.

III . SIGNAL PLUS NOISE MODELS

Let X be a random variable whose distribution i€ that of the sum

of independent variables Y and Z. The distribution F
x is thua the

convolution of F~ and Fz, and may be thought of as a model for signals

in additive noise. There are many sources in nature giving rise to

signal plus noise data. For example, data obtained by a Geiger counter

may be viewed as sums of counts due to the presence of a radioactive

substance and counts due to noise or static. Statistical communication

problems in electrical engineering invariably involve signals in additive

noise, usually modeled as a time series. Other examples in which

convolution models appropriately describe random phenomena occur in the

use of sonar for demersal fishing (see Cushung (1973), for example),

in physiological processes such as synaptic transmission of neural

impulses (see Katz (1966), and in single server queue in which

individuals arriving for service can be classified into mutually

exclusive categories (see , for example, Shonick (1970)). Sclove and

Van Ryzin (1969) describe the problem of estimating the mean density

_ _  -~~. - -~~~-—- --— - ~~~~~~~~~ - -
~~~~~~~~~
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of viruses or bacteria in a homogeneous solution where the variable

observed is an area on a slide. Such a variable might well be modeled

by a continuous convolution of discrete and continuous components.

Estimation problems for specific signal plus noise distributions

have been examined by several authors. For example, Gaf fey (1959)

constructed a consistent estimator for the distribution of one component of

a continuous convolution under the assumption that the “noise distribution”

was 1~nown. Sclove and Van Ryzin (1969) derived method of moments esti-

mators and their asymptotic variances for a variety of multiparameter

signal plus noise distributions. Due to the cumbersome nature of the

likelihood function for convolution models, maximum likelihood estimation

has met substantial resistence. There has been some progress, however,

in one parameter problemg. For example, Sainaniego (1976) proved the

following result:

Theorem 3.1. Let X be a nonnegative integer valued rand om variable

whose distribution is indexed by a positive parameter 9. Suppose the

probability mass function is differentiable in 0. Then

~~ P9(X=n) = P
9(X=n-l) 

- P9(X=n) Vn,T0 (3.1)

if, and only if, the distr ibution of X is a convolution of the

Poisson distribution with parameter 9 and the distribution of a

nonnegative integer valued random variable which is independent of 9.
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If is a sample from a convoluted Poisson distribution,

Theorem 3.1 implies that the likelihood equation £~(9) = 0 may be

written as

it P
9
(Xi=xj

_ l )
E
i=i P9(X~~~

xi)

where x is the vector of observations. It is thus clear that the

behavior of probability ratios such as

P0 (X=
a)

P9(x=b) 
(3.2)

for a < b is relevant to this estimation problem. The property

parametric monotone decreasing ratio (PMDR) is defined in Samaniego

(1976) to mean that ratios of the form (3.2) are decreasing. For

convoluted Poisson distributions with PMDR, the likelihood equation

has at most one solution, and the bILE is easily found numerically. It

is shown that while there are convoluted Poisson distributions for which

the likelihood equation may have any fixed number of solutions, there

are many convoluted Poisson distributions which indeed have the PMDR

property. Among these is the Poisson-binomial convolution, which we

denote by P(9) * B(N,p), with p known. This latter tir lel, ~iith

both parameters unknown, is one of several models examined in the next

section. Similar results to those above are obtained in Samaniego

(1977) for known convolutions of binomial distributions. Convoluted

Pascal distributions are studied in Samaniego and Hannon (1978).

S —. 5- - -— . -.~~~S .
~ -— . —- .~~~ ~~~~~~~~~~~ ~~~~~~~~~~~ —~~~~~~



One-parameter problems such as those described above provide the

key to the feasibility of pseudo maximum likelihood estimation in

convolution models. Not only is it true that in many situations in

which a convolution model is appropriate, there is a parameter of

particular interest, but it is also true for many convolution models

that when all parameters save the one of interest are replaced by

esimates, the pseudo bILE of the remaining parameter is easily found.

The convolution P(e) * ~(N,p) is a good example of a problem in which

maximum likelihood estimation of (0 ,p) is quite difficult , but pseudo

maximum likelihood estimation of either parameter is easily accomplished.

In the remainder of this section, we develop some new results

concerning continuous convolution models. Specifically, we will

consider two convolutions of normal distributions, and demonstrate that

they share the characteristics in one-parameter estimation problems that

have been established for the discrete models discussed above. We

adapt the following definition from Samaniego (1977).

Definition 3.1. Let (f9,~,9E© ,~ Ea) be a family of density functions

indexed by a real parameter 0 and a (possibly degenerate) parameter ~~~,

The family is said to have parametric monotone decreasing ratio (PMDR)

in 9 if, for each fixed ~ and for each x < u for which

> 0 for every 9E© ,~~Ea, the ratio

f(x 9,o)
f(u 9,~)

is decreasing in 9.

I

_ _ _ _  ~~ —-— -- - —5 -—— _ _ _ _  _ _ _ _  _ _ _ _
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Let X be a continuous random variable distributed as the sum of

a binomial variable Y — B(N,p) and a continuous variable Z whose

distribution does not depend on p. Let g () be the density of Z.

Then the density of X is given by

f(xlN,p) = E g(x-y) (

N
)pY(l..~)N Y  (3.1)

It is easy to verify that this density satisfies the system of differential

equations

~~ 
f (x~N,p) = N [f(x-1IN-l,p) - f (xfN—l ,p)J (3.2)

for all x and for all pE(O,l). It follows, given a sample of

size n, that the likelihood s~uation £~(~) = 0 is given by

n f(x~_ lJ N_l ,p)_f(x~ I N_l,p)
E 

N 
,~ = 0 , (3.3)

~~
xi ,p,

where x is the vector of observations. Rewriting the summand in (3.3)

as 

f(xi
_1)N_1,p) - f (x

i
IN_ l ,p)

p(f(xi
_IIN_ l,p) - f(x

il N—1,p)] + f(xilN_ 1,p)

makes it easy to argue that if a continuous convolution of the binomial

• distribution has PNDR, then the logarithmic derivative £~(~) of the

likelihood is decreasing in p. Thus, the bILE for p in a one-parameter

model of the form (3.1) with PMDR is either zero, one of the unique

solution of the likelihood equation (3.3).
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The development of the preceeding paragraph holds as we ll for

continuous convolutions of the Poisson distribution. Specifically,

let X be a random variable distributed as the sum of a Poisson

variable X — P(O) and a continuous variable Z whose distribution

does not depend on 9. If Z has density g, then the density of j
X is given by H

9y - 0f(xf9) = E g(x-y) 
e, (3.4)y.

Densities of the form (3.4) satisfy the system of differential equations

~~ 
f(x~9) = f(x-lIO) - f(x19) (3.5)

for all x and for all 0. It follows that the likelihood equation for

a sample of size it from this distribution is given by

U f (x~-l)0)
E = n. (3.6)
i=l ~

X
i /

It is clear that when a continuous convolution of the Poisson distribution

has PMDR, the likelihood equation has at most one root, and the MLE may

be easily obtained numerically.

We now demonstrate that several important continuous convolution

models indeed have PMDR in the parameter of the di8crete component.

We consider below normal convolutions of binomial and Poisson distributions.

Since the parameters of the normal are assumed known, we may, without

loss of generality, set p.=O and cr2=l.

— - ~~~~~~ ~~
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Theorem 3.2. The convolution I3(N,p) * iL(O,l) has PMDR in p.

Proof. We denote the normal density by n( .) .  Let x < u, and

consider the ratio

R(p;x,u) = 
f(x i)
f(u p)

E n(x-y)( 
N 

~ 
pY( 1~~) N Y

= 

~~:
n u

~vK .v )  
v ( 1 ) N-v

E n(x
~y)C 

N

) 

F

E n(u-v)( 
~~
) (

~~~~
)

We will show R(p;x,u) is decreasing in p. To this end , we define the

function

g (9) = 
~~0

n(x_
~K 

) 9y

E n(u-v)( 
~~
) 9

v

- 

We intend to show that 
~~ ~~~~~~ 

< 0. We note that the numerator of

~~ 
~~~~~~ 

is

S ~~~~~~~~~~~~~~~ - ~ -- •~~~— —~~~~~ ~~~. .—
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~=1 
n (x-y)( N) y g Y~~ )  (

v~~
n
~~~~~~~

9
~
1)

- (
~ E n(x_y)( N) O Y )  (

v~ l
U_

~~~~~
)
~
/ 9”

~~~)

N
= n(u) E

y=l Y

N
+ n(x)

v~
;
1
n(u

~
v)(

~
)ve

v_l

+ ( h(x~y)( N) y e~4) ( E fl(U~V)(~~)9v)

+ ( E n(x~y)( N)O Y )  
~~~~~~~~~~~~~~~~~~~~~~~~

A + B

where

N
A = Z fn(x-y)n(u ) - n(u_y)n(x)J(N)yOF~~

y=1 S

and

• B = ~ n(x-y)n(u-v)(~~)(~~) (y~v) ”~~
y=I v=1



~ 
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Now A < 0, since the inequality

n(x-y)n(u) - n(u-y)n(x) < 0

is easily shown to be equivalent to

x < u.

To show that B < 0, we define, for fixed x < u, the function
4

G(y,v) = n(x-y)n(u-v)(~)(~).

One may show that the inequality

G(y,v) > G(v,y)

is equivalent to the inequality

y < v.

Thus , we may write

B E E G(y,v)(y-v)e~~
’1

y=l v=l

= E G(Y,vX~y-v)9~~~~
1 + E G(y,v)(y~v)03*~~~

y<v y>v

E G(y,v)(y-v)&’~’~~ + E
y<v y<v

v+v- 1
= E (G(y,v)- G(v,y)J(y-v)tr
y<v

5- - - -— ~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~ ”-



5,- -- ~~~~~~~~~ ~~~~~~~~~~~~~~ 
- ~~~~~~~~~~~~~~ ~~~~ :.L ~~~~ ~~~~~~~~~~~ r-~

--

27

This latter sum is clearly negative. We thus have that g (9) is a

decreasing function of 9. Since

R(p;x,u) = 0(P)

where is decreasing and 9 is increasing, we have that R(~;x,u)

is decreasing, completing the proof.

Theorem 3.3. The convolution 6’(e) * 11(0,1) has P~~R in 9.

Proof. This result obtains using the same style of proof as in

Theorem 3.2.

PMDR may be demonstrated for a large class of continuous convolutions

of binomial or Poisson distributions. For example, it is easy to show

that the convolution P(9) * U(a,bl of Poisson and uniform distributions

has PMDR in 9. Our original proof of Theorem 3.3 was based on a

limiting argument which approximated the distribution of Y + Z, with

Z 11(0,1) by y + ~~ z~ where i~d U(V3,/3] - We showed

that each approximating distribution had PMDR in 9 and argued that

the limiting distribution Y + Z must also have P~~R in 9. This

method of proof, which is quite inefficient by comparison to the direct

proofs of Theorems 3.2 and 3.3, does suggest that the class of continuous

convolutions of Poisson or binomial distributions having PMDR is rather

broad.

L --~~~— -- - ~- ~~~•s .S- -- -- - - - - - ~~~~~~~~~~~~~~~~~~~~ - ~~~ - -
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We remark in closing this section that the system of differential

equations in (3.2) and (3.5) have not been shown to characterize

continuous convolutions of binomial or Poisson distributions. We

conjecture that they do.

IV. R ULARITY OF SIGNAL PLUS NOISE !4)DELS

In this section, we seek to demonstrate that a var iety of s ignal

plus noise models satisf y the regularity conditions under which the

asymptotic theory of pseudo maximum likelihood estimates has been

developed. Since demonstrations of this sort are tedious and uninterest-

ing, we give details only for one fairly typical model - the convolution

of a Poisson signal distribution with a normal noise distribution. We

state without proof that three other models are also regular: Poisson

signals in binomial noise, binomial signals in Poisson noise and

binomial signals in normal noise. The verification of regularity

conditions for these three models is no more complex than that for the

model considered here. The regularity of these models, together with

the fact that method of moments estimators of noise parameters satisf y

the requirements of Theorems 2.1 and 2.2 , renders as ful ly known the

asymptotic behavior of at least one pseudo maximum likelihood estimator

of the signal parameter of each model.

Let X be a random variable distributed as the sum Y + Z of

independent variables , where Y is Poisson distr ibuted with parameter

9 and Z is normally distributed with mean zero and variance Cr
2
.

The distribution of X will be denoted by P(9) * 11(O,T),where ~ =

- - 
I

-- — -- - -5- 5 - - 5-- - ,--—--.—- - - . - - — - - - - - - 5~~~~~~~~~~~~~~~ - - -— - -.—— - -~~~~~~~~~~~~ - — — -  -~~~~~~~
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the mass function of Y is denoted by P(y~9), y=O,l,... and the

density of Z is denoted by n(z I r ) .  The density of X is given by

• f(xI9,~) = 
~~ 
n (x-yl~)~(yI9), 

- ~ < x < ~~. (4.1)
y=O

• Let (9
o
,1
~~

) be the true parameter vector, and assume O < a 1<00 < ’a2 <c’

and O < b 1< r 0<b 2 <a~. The open sets A and B introduced in

Section II represent the open intervals (a1,a2) and (b1,b2)

respectively. We first prove a theorem which will be useful in the

verification of several regularity conditions. We need the following

result.

Lennna 4.1. Let f(xIO ,T) be a density of the form (4.1). Then

~~ 
f(xIe,T)=

~~L
(
~~

x2)f(xI6,T) - e(l-2x)f(x-1I8,T)-92f(x-2I0~T)~ (4.2)

Proof. First note that

~~ n(xI’r) =~~ (~~_ x
2)n(xI.r).

In differentiating f(x19,T), we need to pass a derivative through an

infinite sum- , a va lid opera tion since

I~ n(x-yIT)P(yIO)I

= ~- I~ 
- (x-y)

2
~n(x-y~1)P(y~9)

<~~~
(
~~

— +  (x-y)2)n(O~b2)P(y~9)

M(y,9).
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and, for each fixed 9 E A, E M(y,9) < ~~. Thus
y=O

~~ f(x~9,r)

= ~~~~ 
n(x-yIr)P(y19)

y=O

= 
~ 

- (x-y)2)n(x-y~.r)P(y~e). (4.3)
y=O

To establish the desired identity, we deal with the probability mass

function

g(y) = 
n(x yI T)P(y I e)

f ( xl e ,1)

where 9,T and x are considered f ixed. One can easily verify that

if y is a nonnegative integer valued random variable with mass

function g(y) , then

EY= ~ 
f(x-lIO,T)
f (x( 9, T)

and EY(Y- l)  = ~2 f(x-2I91 r)

from which it follows that

2 2 f(x-219,r) f(x-lIQ,T)EY — ~ f(x19,T) + ~ f(xI O,T) 

-—--~~~~~~~~~~~~~ 5 - - ----- -- - 

j
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We may thus expand , for fixed x,

l (x-y) 2n(x-y~ r)P(y~e) = E(x-’!)2. f(x19,T)

= x2f(x19,r) + 9(1-2x)f(x=l19,r) + 92f(x-219,r).

Substitution of the latter expression into (4.3) yields the identity

(4.2).

Theorem 4.1. Let Cf(x 19 ,r)) be the class of density functions on the
real line of the form (4.1), and let C be the class of all linear

combinations of terms of the form

or(x,9,r) 
~...1 f xf9,T (4.4)

where ~(x,9,i) is a polynomial in x, 9 and lIT , and 5~~, i=l,...,m

are real numbers such that x--8~ is a positive integer for each i.

Then

(i) The class C is closed under partial differentiation with

respect to 9 or r , and

(ii) Every member of C is bounded on A X B by a function with

finite expectation.

Proof. To prove (i), we need only examine a single term of the
j
9kform (4.4) . Suppose a(x ,9,T) = E , and denote f(.I9,T)

j,k,L -‘

by f(.) for simplicity. Then

~~~~~~
-5 —-- __ _ _ _ _ _ 5 __ - - — - ---—~~~~- _ _ _ _5_ 

- ‘_ ~_‘- ——---5--- - — _ __ 5 _ _ _ _ _ __ -__ _____ _ - _ 5 -  —5
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m f(a)
~~ ci (x ,9, r) 

i=l f (x)

r x~9
t
~
1 -~ m

r 

= LE~~jkL ¶2 J 
~~ 

f (x)

E [f(a i
_ 1)_f(aj)1 U f(a

r)

+ a(x,9,T) ~~~~~ ri~i

(f(x))
m

+ cv(x,9,r) II f(s1) 
1 . (—m)(f(x—l)—f(x)J,

i=l f(x)

which, by inspection, is in the class C. We also have, using Lennna

4.1, that

m f(a~) k- m f(a
i)

~~ ~(x,9,r) 
i=l f(x) 

LE( L)
~jkL ~~~~~ f (x)

+ 
cv(x,9,T) 

. ~ [~! _a
~)
2
~~e ) -9(l—2a~) f (a~-l)

2(f (x))
m 

i=l 
¶ i

- 92f(ai-2) U f(a )
- ri4l. r

+ ct(x,9,r) ~ 
1 

1~ 
(-m)[(~~-x

2
)f(x) -9(l-2x)f(x—l)

i=l

2
- 9 f(x~2)j

is in the class C. This completes the proof of (i). To prove (ii),

we show that a single term of the form (4.4) is bounded on AX B by a

- -- - -- -5 - - - ------

~
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function with finite expectation. If ~(x,9,r) = E 
~ kL ~ thenj,k,L 

T
2

jk

<

r 1

Since the convolution P(Ø) * 11(O,r) has PMDR in 9, we have for any

integer i

f (x = i I Q ,_r) 
< 

f(x—iIO, i)
f(x~8,r) — f(x~O,r)

— 
n(x-iIT)
n(xIT)

= e
T1

~
C
e
_h12h/2

b1ix b ix —b1i
2
12

�Le + e 2 
je

Thus, terms of the form (4.4) can be bounded above by linear combinations

of terms like IxI
ie~~ for specific positive integers i and positive

constants b. It remains to show that for any positive integer i and

any b > 0, EIXI~ e
b X < ~~ • First we note that for any positive I and b,

y
~
0
Y
i
e
bYP(Y~e) = e

9(e’
~~ y

ip(y~Ø~b) < ~ (4.5)

and

S 
IxI~~e~

xnx IT d x = e
t)2/’2T r 

ix I iJ e
TI _U

~
s
~
2
~~

2
dx < ~

(4.6)

Ii

- 5 5 . - . 

-___ -- -5--- -- ~~~~~~ _—
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Now, for X — P(9) * 11(0,1), we have, using Fubini’s theorem and an

elementary inequality,

EIX
t
Ie’~ 

= ~~Jx
tIe~~f(xI9,T)dx

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~

= E 
~(yI~

)
~ 

x
h
(e
ha n(x~yIT)dx

y=O -.

= E P(yI9)e~~J I (u+y)~ Ie~~n(uI T)du

(where u = x-y)

E P(y19)e~~J 2
t
(~u~~+ 1y1

1
)e”n(uIT)du

y=O -m

= Zi~~~~( I9)e~~S~ uI
i
~~~ n(u~1)du

+ ~~~~~~~~~~~~~~~~~~~~~~~~~

The latter terms are finite by (4.5) and (4.6).

-_-

~~~~~~~~~~~~
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We now demonstrate the regularity of the model (‘(9) * 11(0,1).

(Al) Derivatives of ~ of all orders in 0 and T exist and

may be written in closed form as functions of the density f(.~9,T)

in (4.1). This claim follows from part (i) of Theorem 4.1 and the

fact that the derivatives of and 
~ 

belong to the class C of

Theorem 4.1. Indeed,

~ (xJ9,r) = 
f(x-l19,’r)- f(xIOIT)

9 f (x j O ,T)

and-

~~~~ 
x2,€i xIe,r~ - e(l-2x)f(x—119,T) - 92f(x-219,r)

~1(x19 ,T) = 
2f(x~0,T)

(A2) The validity of the interchange of differentiation and

integration of the density f may be checked directly. For example,

for any 0> 0  and 1> 0 ,

j’ f(x (9,T)du =

and

~~ f (x~9, r)du

J’( f ( x -l(9 ,T) - f(x19,T))du = 0

Other interchanges may be checked similarly.

5- -  - -5-~~~~~~~~~~ - - - --- - --— - _-5~~~~~~~~~~ - — — 5 - - -~~~~~~ --~~~~~~
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(A3) The existence of and follow from Theorem 4.1. That

> 0 is obvious.

(A4) We have

f(xIQ,1)
~~ log f(x100,T)

= log f(x19,T) - log f(x190,T)I

< ~~~~~~~ + I~ .(x19~,T)I L

The latter two terms are bounded on AXB by functions with finite

expectation according to Theorem 4.1.

(AS ) Part ial derivatives of ~ of any order are members of the

class C and are thus bounded on A X B  by integrable functions.

(A6) The identifiability of the model (‘(9) * 11(0,1) is an easy

consequence of Theorem 2 of Sclove and Van Ryzin (1969). Using their

notation, we may define

=

and H2(X1,...,
X )  = 

~~i ~~1
0ci~~)~ 

= s
2
.

Then
h1(9,1) = EH

1
(X1,...,X ) =  0

h2(e,T) = EH
2

(X
1~
...~X~) = e +

Since 9 and are strictly monotone functions, we have from the

aforementioned theorem that (‘(9) * 11(0,1) is identifiable.

I
- - -- 5 - - - - - . —~~~~~~~— ~~~~~~~~~--5 - -~~~~~~~ - - ~~-— ~~~~~~~- - -~ —- - - - -- -- - - - -~~- - - - --— -~~~~~~
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V. EFFICIENCY QUESTIONS

For the signal p lus noise models discussed in the previous section,

we may now claim the consistency and asymptotic normality of the pseudo

maximum likelihood estimate of the signal parameter, provided the noise

parameter is estimated appropriately. The method of moments, for

example, yields estimates of the noise parameter that satisfy the

requirements of Theorems 2. 1 and 2.2. The efficiency of the resulting

pseudo maximum likelihood estimates will now be examined. We present

below ev idence in support of our conjecture that these pseudo MLE ’s are

uniformly more efficient asymptotically than the method of moments

estimators of the signal parameter . Our results suggest that solving

a reduced system of likelihood equations for certain parameters of a

model serves to improve the asymptotic efficiency of estimates of these

parameters. We are unable at present to prove our conjecture due to

the fact that the asymptotic variances to be compared are functions of

the Fisher information matrix, the components of which are only available

via series representations. However, since we are able to approximate

these asymptotic variances to any desired degree of accuracy for any

fixed value of the parameter pair, we have computed and compared them

for the Poisson-Binomial convolution for a fairly broad collection of

parameter values. We study the asumptotic relative efficiency of

PMLE’s both for Poisson signals in Binomial noise and for Binomial

signals in Poisson noise.

— - -

~
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with

t = 2N

r22 
= so + Np0(l-p0)

r23 
= + Np 0(1-p 0)(1-2p0)

and 1’23 = 

~0 
+ 2[80+Np0

(l p0
)] 2+ Np 0(1-p 0)[l-6p0(1-p0) ] 2

To see this, we note that the vector

- U = / n  H1 -p. ,

2H 2 
- Cr

where ~ = E X 1 and ~
2 

= E(X1 
- p~)

2 is asymptotically equivalent to

the vector

.1E 
~9(x9~,p~)

~ 
E(xi

_
~
)

1 n
— E (x1-p)~ -Cr

- 

~~ i=l

It follows from the multivariate central limit theorem that

U ~~> 11(o,r),

- ----- -5 -5 -— _~~~~~~~~- - - ~~~~ - —-- - —5  ~~-- - --5~~~~~ - ___- -- -----5— - - - - - -5-
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where

F11 = var ~9(X
1~90,p0) =

F12 = cov (~9 (X1t9 0,p 0), X1)

= E(X1~9(X 1l9 0,p0)) by condition (A2 )

= E x~~ f (x I9 ,pO)I
x=O e

= E x[f(x-l)9
0
,p
0) 

- f(x190, u0)]

= 1

r13 = cov( -~9
(X

1Ig0,p0), (X
1
-~.&)

2
)

= E(X1-p)
2
~9

(X1I90,p0)

= E (x-~L)
2
[f(x-lf90,p0) 

- f(x190,p0
)]

= 1

r22 = var = 9~ + Np0(l-p0)

r23 = Cov( X1-p ,(X1-~ )2
)= 9 + Np0(l-p0)( 1-2p0)

and I’
33 

= var(X1-p. )2 
= 9+2(00+Np 0(l-p0

)] 2

+ Np0(l-p0)(l-6p0(l-p0)J

We may obtain (5.1) by the 6-method, since

£e(OOIPO)1 = g

j H2 J
where g1(t1, t2 ,t3) = t

1

I t2-tand g2(t 1, t2,t3) =4 N

L . ~~~~~~~~~~~~~~~~~~ ..
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is a totally differentiable transofrmation.

Let

1 0 0

0 t -t

Then (5.1) follows from the 6-method theorem (see Rao (1965)), with

E = A F AT.

We now record the asymptotic variances of the maximum likelihood

estimate (MLE), the pseudo maximum likelihood estimate (PMLE) and the

method of moments estimate (14MB) of the signal parameter

2 ~22
= 

2 (5 .2)

~ll~22~~l2

2 1 l 2 2 ~= i— + —r- t Lr22
_ 2r23+r33~ (5 3)

~
‘ll

= (l_Nt)2r22 +2Nt(1_Nt)r23+ (Nt)
2
1~33. (5.4)

The difficulty in directly comparing these expressions resides in nur

inability to represent c9
1.j in any form other than the series below:

= E ~~(X)90,p0)

~ [f(x-l)N,00,p )-f(x)N,9 ‘p )]
2

x=0 f(xTN ,90,po)

-5- - — 5 - 5 - - -- - —  — - - - ~~~~~-- - -5 - - - -_ - - - -—---- - -5 5- -5 - -~~~~~~~~—-55-~~~~~~~~ - - _ —---
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~l2 E ~9(XI90,p0)$~(Xj90,p0)

=N 
(f(xlI N,90,pO)_f(xIN ,90,pO)J[f(x..lIN...1,00,pO

)_f(xIN_l S p ) ]

x=0 f(xIN,90,p0)

(5.6)

: 

c9
22 =E {

~(xIe0,p0)

2 ~ 
(f(X 1IN- 1,90,p0) - 

f (x~N-l,901p0)]
2

=N 
f(x~N,00,p0) 

(5.7)

We approximate by sums of the initial terms of the series

(5.5)-(5.7). We develop bounds on the error of approximating the

infinite series (5.5)-(5 7) by finite sums. We give details only for
the approximation of (5.5). First, note that the ratio

— 
f(x-lIN,9,p)g(x) — 

f(xIN,9,p)

is decreasing in p (this is the PMDR property). Since ~0(x) 
= q(x)-l,

we have

max {k9(xIN~e~o)I~~(I9(xIN,s,l)I}

From this it follows that

provided X 
~ L 

~ 
N +9 .  We thus have for L > N+9, the error
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L
E11 - E 

~~(xIN ,901p0)f(xIN,90,p0)x=o

2
= E ~9

(x)f(x)
x=L+ 1

2
~ (x-9) f(x)

b x=L+l 9

2 L 2
= E 

(x-9) 
- E (x-9) f (x ) .

9 x=O 9

Similar bounds may be eBtablished for

L
E12 

= 

~l2 
- E~~~9(x)~~~(x)

L
and E22 = c9~~~ ~ ~

2 (x)
x=O

With such bounds, we may approximate c9~~ (90,p~) to any desired accuracy

for any fixed value of the pair (90,p0). For a specific range of

parameters, we have approximated with errors Eu no greater than

l0 ~, and have used these approximations in computing the asymptotic

efficiency of the PMLE relative to the NLE and of the 14MB relative to

the PIILE. The parameter values examined are the following :

00 
= .1,.25,.5,l(1)l 0

p0 
= .l(.1).9 (5.8)

N = 1(1)10.
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For the parameter values above, we find

.57288 <ARE(PNLE/MLE) < 1

.42712 < A R E ( M M E / P M L E) < 1.

From this computation, we are led to conjecture that this pseudo maximum

likelihood estimate of 9 is uniformly more efficient asymptotically

than the moment estimator of 9.

We obtained similar results for the pseudo MI.E of the binomial

parameter using the moment estimator of the Poisson parameter.

Specifically, for the parameter set in (5.8), we find

.63983 < A R E ( P N L E / M L E )  < 1

.34036 <ARE(NME/PNLE) < 1.

VI. DISCUSSION

This paper advances a method of estimating a subset of parameters

in multiparameter models, and investigates its numerical and asymptotic

characteristics. We have given general conditions under which pseudo

maximum likelihood estimates are consistent and asymptotically normal.

For the signal plus noise models discussed in Section IV , we have

demonstrated the numerical feasibility of the approach and have verified

that the asymptotic properties of the general method obtain. Moreover,

a numerical investigation suggests that pseudo maximum likelihood

estimates lie strictly between the MLE and the method of moments

estimate for the signal parameter in terms of asymptotic efficiency.

In general, we view the process of solving a reduced system of likelihood

equations as a technique which promises to improve the asymptotic 

- -5- - -  -- -5 5--~~~~~~~~ - - - ~~~~~~~~~~~
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behavior of estimates of specific parameters.

The models to which we have applied the method of pseudo maximum

likelihood estimation constitute a large class of models of considerable

practical interest. We do not wish to leave the impression, however,

that the method is limited to this particular application. The method

might be considered for estimating parameters of any model for which

consistent estimates are readily available, while the construction of

efficient estimates poses an untractable problem. The method of

moments has been shown by a number of authors to be tractable for many

mixture models for which direct maximum likelihood estimation is

virtually impossible. There are also a number of models popularly used

in reliability studies for which lower dimensional maximum likelihood

estimation is straightforward and method of moments estimators as well

as other reasonable but suboptimal estimators are easily obtained for

the full set of parameters. Among these are three parameter gansna

distributions, two or three parameter Weibull distributions, and the

extreme value distributions. Details on estimation for these models

are nicely suranarized in Johnson and Kotz (1970). Another potential

application of the pseudo maximum likelihood approach is to the estima-

tion of regression parameters of variables transformed to normality via

the Box-Cox (1964) transformation. Finally, there are many nuisance

parameter models that have been studied or mentioned in the literature

(see, for example, Basu (1975) and (1977)), and estimation for some of

these models may well benefit from application of the approach we have

advanced here. Indeed, we believe that this paper will provide
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theoretical justification for what practitioners have been doing for

years.

It is worthwhile calling attention to the fact that the asymptotic

theory developed here is not directly comparable to the asymptotic

theory for maximum likelihood estimates or, more generally, for best

asymptotically normal (BAN ) estimates . In a sense, the requirements

on the model are slightly less stringent for pseudo maximum likelihood

estimation than for these other methods. Specifically, the asymptotic

results obtained in Section II require a little less regularity in the

modelvis-a-vis the nuisance parameter than is required by the asymptotic

theory of efficient estimates . Immediate evidence of this is the fact

that the Fisher information

~22 = E(-
~

2 (X I9 ,p))

need not exist, and does not enter into the results proven here. There

are other differences in regularity conditions, but a full discussion

of them is somewhat academic. The models we have examined are fully

regular under either theory, as are most models of interest. It remains

true that the method of pseudo maximum likelihood estimation may be

applicable in situations where the standard theory for 14LE’s or BAN

estimates breaks down. We leave this fact for the interested reader to

explore further.

We make one final remark on BAN estimation. A common approach to

BAN estimation is the so-called expansion of a /n-consistent estimate

in a Taylor series, which may also be viewed as a one-step iteration

using the Newton-Raphson procedure. Since the signal plus noise models
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we have examined are BAN-regular, the method may be used with the method

of moments estimator as the seed. The limitation one encounters with

thia approach is the fact that the BAN estimator so constructed is

written in terms of first and second partials of the density function,

and thus involves (for the Poisson-normal convolution, for example) a

sum of several rational functions of terms expressible only as infinite

series. Thus, while a formal representation of a BAN estimator may be

given, the consequences of making necessary approximations to obtain a

usable estimate are largely unknown. Of course, certain approximations

are also required to produce a pseudo MLE. The very interesting question

of the comparative performance of these two approximations and other

competing estimators in small or moderate size samples will be the

subject of a future investigation.

An iterative procedure based on the method of pseudo maximum likeli-

hood estimation may provide more efficient estimates than the single

iteration we have discussed. In a two parameter model ~~~~ for exanpie,

one might estimate p by the method of moments, and obtain alternately

the pseudo NLE of 9, then of p, and so forth. The convolution

P(9)*B(N,p) lends itself to application of such an algorithm since both

one-parameter problems are easily solved by maximum likelihood, while

the two-parameter problem is not. One feature of the algorithm suggested

above is that the likelihood is guaranteed to increase with each iteration

a characteristic which some numerical procedures for finding the MLE do

not possess. Under regularity conditions, the algorithm should converge

to the Ml~, but the speed of this convergence may preclude its use.

L _ _ _ _
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